Forgot password? New user? Sign up
Existing user? Log in
Find all values of θ \theta θ such that
cos2θ=1. \cos^2 \theta = 1. cos2θ=1.
In the options, nnn is an integer.
Are you sure you want to view the solution?
Given that
cos(A)−4sin(A)=1, \cos(A)-4\sin(A)=1,cos(A)−4sin(A)=1,
what are the possible values of
sin(A)+4cos(A)? \sin(A) + 4\cos(A)? sin(A)+4cos(A)?
sinθ+cosθ=2sin(90∘−θ),cotθ= ?\sin\theta+\cos\theta=\sqrt{2}\sin(90^{\circ}-\theta), \quad \cot\theta = \, ? sinθ+cosθ=2sin(90∘−θ),cotθ=?
Give your answer to the above problem to 3 decimal places.
Find the value of xxx between 0 and 180 such that
tan(120∘−x∘)=sin120∘−sinx∘cos120∘−cosx∘.\tan({ 120 }^{ \circ }-x^{ \circ })=\frac { \sin{ 120 }^{ \circ }-\sin x^{ \circ } }{ \cos{ 120 }^{ \circ }-\cos x^{ \circ }}.tan(120∘−x∘)=cos120∘−cosx∘sin120∘−sinx∘.
If cos4αcos2β+sin4αsin2β=1,\quad \quad \dfrac{\cos^4\alpha}{\cos^2\beta}+\dfrac{\sin^4\alpha}{\sin^2\beta}=1,cos2βcos4α+sin2βsin4α=1, find the value of sin4βsin2α+cos4βcos2α.\dfrac{\sin^4\beta}{\sin^2\alpha}+\dfrac{\cos^4\beta}{\cos^2\alpha}.sin2αsin4β+cos2αcos4β.
Problem Loading...
Note Loading...
Set Loading...