Sign up to access problem solutions.

Already have an account? Log in here.

Equations with trigonometry in them can look scary, but that's nothing that a quick little substitution can't fix.

Find the smallest possible positive value of \(\theta\) such that \[ \tan^2(\theta)=\sec (\theta).\]

If \(\theta\) can be represented by \(\tan^{-1}\left( \ \sqrt{\dfrac{a+\sqrt{b}}{c}}\ \right)\) where \(b\) is square free and \(a,b,c\) are integers. Find \(a+b+c\).

Sign up to access problem solutions.

Already have an account? Log in here.

How many real numbers \(x\) satisfy

\[\pi \cdot \sin x= 2x?\]

Sign up to access problem solutions.

Already have an account? Log in here.

A square \(ABCD\) of side length \(k\) contains unit circles at each of corners \(B\) and \(D\) such that each circle is tangent to the square at precisely two points. A ray of light emanating from point \(A\) reflects off each circle and then returns to \(A\), creating a path in the shape of an equilateral triangle.

There is a unique value of \(k\) for which this scenario can occur. Find \(\lfloor 10000\cdot k \rfloor\).

Note: "Reflecting" means that the angle of incidence equals the angle of reflection.

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

Sign up to access problem solutions.

Already have an account? Log in here.

×

Problem Loading...

Note Loading...

Set Loading...