Classical Mechanics
# Circular Motion

Take gravitational acceleration \( g= 10 \text{ m/s}^2. \)

A car is in uniform circular motion on a flat circular track of radius \( 70 \text{ m}. \) If the coefficient of static friction between the car's wheels and the track is \( 0.5 ,\) approximately how fast can the car move without losing traction with the track?

The gravitational acceleration is \( g= 10 \text{ m/s}^2. \)

A coin is gently placed on a rotating horizontal turntable that is slowly accelerating. The coin's initial distance from the axis of rotation is \( 40 \text{ cm}. \) If the coin starts to slip when the coin's speed is \( 60 \text{ cm/s}, \) what is the approximate coefficient of static friction between the coin and the turntable?

The gravitational acceleration is \( g= 10 \text{ m/s}^2. \)

A particle moves in uniform circular motion on the \(xy\)-plane. When the particle's position is \( (2 \text{ m}, 2 \text{ m} ), \) its velocity is \( -4\hat{i} \text{ m/s} \) and acceleration is \( +1.00 \hat{j} \text{ m/s}^2. \)

Calculate the coordinates of the center of rotation.

×

Problem Loading...

Note Loading...

Set Loading...