10 Questions packed into one Question

Calculus Level pending

For statements that is correct, type 1. For statements that is incorrect, type 2. For statements that is partially correct, type 3. So the answer is a 10-digit number \[\] 1) \(\sqrt [ 3 ]{ 27 } \quad -\quad \sqrt { 9 } \quad =\quad 0\) \[\] 2) \(\log { 10 } \quad \times \quad \log { 100 } \quad =\quad \log { 1000 } \) \[\] 3) \({ x }^{ 2 }\quad -\quad 2x\quad -\quad 3\quad =\quad 0\) has the factors \(x\quad =\quad -1\) and \(x\quad =\quad 3\) \[\] 4) \({ 999 }^{ 999 }\) is divisible by 3 \[\] 5) Since \(10!\) has 2 trailing zeros, and \(20!\) has 4 trailing zeros, \(10! + 20!\) has 6 trailing zeros \[\] 6) \(sin\quad { 2460 }^{ \circ }\quad =\quad sin\quad { 300 }^{ \circ }\) \[\] 7) If \(f\left( x \right) \quad =\quad \frac { ax\quad +\quad b }{ cx\quad +\quad d } \), then \(f^{ -1 }\left( x \right) \quad =\quad \frac { -dx\quad +\quad b }{ cx\quad -\quad a } \) \[\] 8) \(\sqrt [ 4 ]{ x } \quad \times \quad \sqrt [ 4 ]{ x } \quad =\quad \sqrt { x } \) \[\] 9) \(\lim _{ n\quad \rightarrow \quad 1 }{ \frac { { n }^{ 2 }\quad -\quad 1 }{ n\quad -\quad 1 } } \quad =\quad 2\) \[\] 10) \(\frac { \sqrt [ 10 ]{ 10 } }{ \log _{ 10 }{ 10 } } \quad =\quad \frac { 5 }{ 2 } \pi \)

×

Problem Loading...

Note Loading...

Set Loading...