Forgot password? New user? Sign up
Existing user? Log in
xn=∑k=3n1+1(k−1)2+1k2\large {x_n = \displaystyle \sum_{k=3}^n \sqrt{1 + \dfrac{1}{(k-1)^2} + \dfrac{1}{k^2}}}xn=k=3∑n1+(k−1)21+k21
Let xnx_nxn shown above be defined for nnn, where nnn belongs to the set of natural numbers. Then find the value of limn→∞ln(xn)n{ \displaystyle\lim_{n \to \infty}\dfrac{\ln(x_n)}{n}}n→∞limnln(xn).
Problem Loading...
Note Loading...
Set Loading...