\[\large{\begin{cases} 2{ x }^{ 2 }-yz\left( 2-\sqrt{2}+\sqrt { 6 } \right) =\left( y-z \right) ^{ 2 }\times 2 \\ z^{ 2 }+xy(\sqrt { 3 } +2)={ (x+y) }^{ 2 } \\ \frac { y+z }{ x } =\frac { x-az }{ y-z } \end{cases}}\]

For some positive real numbers \(x, y, z\) satisfy the system of equations above. For some particular value of \(a\) ( \(a \in \mathbb{R^{+}}\) ) and the ratio \(\dfrac{z}{y}\) ( let's say the ratio be \(m\)), there exist infinitely many solutions for the above given system in \( (x,y,z) \). Find

\[ \left\lfloor 1000a \right\rfloor +\left\lceil 1000m \right\rceil \]

*Feel free to report if you believe the question is wrong*

×

Problem Loading...

Note Loading...

Set Loading...