#2 Measure Your Calibre

Algebra Level 5

\[x^{2016} + (2016!+1!)x^{2015} + (2015!+2!)x^{2014} + \cdots + (1!+2016!) = 0\]

Find the number of integer solutions to the equation above.

Notation: \(!\) is the factorial notation. For example, \(8! = 1\times2\times3\times\cdots\times8 \).


Other problems: Check your Calibre

×

Problem Loading...

Note Loading...

Set Loading...