2013, 2014, 2015, 2016!

Level pending

Let \( p \) be the largest integer \( n \) such that \( 2013^n \) divides \( 2013! \). Let \( q \) be the largest integer \( m \) such that \( 2014^m \) divides \( 2014! \). Let \( r \) be the largest integer \( s \) such that \( 2015^s \) divides \( 2015! \) Find the largest integer \(x\) such that \( [(p+1)(q-2)(r+3)]^x \) divides \( 2016! \).

×

Problem Loading...

Note Loading...

Set Loading...