2015 welcomes Kishlaya's Identity!

Let P(n)=m=1(k=0n1m+k)P(n) = \sum_{m=1}^\infty \left(\prod_{k=0}^n \frac{1}{m+k}\right) And Q(n)=k=1n1P(k)Q(n) = \sum_{k=1}^n \frac{1}{P(k)}

Then find the last 44 digits of Q(2015)+2015Q(2015)+2015

×

Problem Loading...

Note Loading...

Set Loading...