250 Followers problem!

Algebra Level 2

f1(x)=xf2(x)=1xf3(x)=1xf4(x)=11xf5(x)=xx1f6(x)=x1x \begin{aligned} f_1 (x)&=&x\\ f_2 (x)&=&1-x\\ f_3 (x)&=&\frac{1}{x}\\ f_4 (x)&=&\frac{1}{1-x}\\ f_5 (x)&=&\frac{x}{x-1}\\ f_6 (x)&=&\frac{x-1}{x}\\ \end{aligned}

If we know that f6(fm(x))=f4(x) f_6 (f_m(x))=f_4(x) and fn(f4(x))=f3(x) f_n (f_4(x))=f_3(x) , find the minimum value of m+nm+n.

×

Problem Loading...

Note Loading...

Set Loading...