Consider the equation \( \frac{1}{x} + \frac{2}{y} = \frac{4}{2015} \) for \( x > 0 ; y > 0 \). Suppose the number of integer solution is A. Now \( A^3 = 1000*a+100*b+10*c+d\) where \( 0<=a,b,c,d <=9 \). Find \( a+b+c+d \).

Find other problems of this set

×

Problem Loading...

Note Loading...

Set Loading...