Forgot password? New user? Sign up
Existing user? Log in
x+y=z2x2+y2=z3\large x + y = z^2\\ \large x^2 + y^2 = z^3x+y=z2x2+y2=z3
If positive integral solutions (x1,y1,z1),(x2,y2,z2),…,(xn,yn,zn)(x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n)(x1,y1,z1),(x2,y2,z2),…,(xn,yn,zn) satisfy the system of equations above, find the value of
∑i=1n(xi+yi+zi)\large \displaystyle \sum_{i=1}^n (x_i + y_i + z_i)i=1∑n(xi+yi+zi)
Problem Loading...
Note Loading...
Set Loading...