3087 - a special number. how?

Algebra Level 2

\(a, b , c , d \in \mathbb{N}\) , such that ,

\(\overline{abcd} - \overline{dcba} = 3087\)

Let \(a > b > c > d\)

If \(a = 8\) , find \(a + b + c + d\).


Details and Assumptions -

  • If \(\overline{abcd}\) is \(5964\) , then \(a = 5 , b = 9 , c = 6 , d = 4 .\)

and dcba is 4695 .

×

Problem Loading...

Note Loading...

Set Loading...