Forgot password? New user? Sign up
Existing user? Log in
Given I=∫0π/2xsin(x) dx\displaystyle I= \int^{\pi/2}_{0} \frac{x}{\sin (x)} \, dxI=∫0π/2sin(x)xdx and J=∫01tan−1(x)x dx\displaystyle J = \int^1_0 \frac{\tan^{-1}( x)}{x}\, dxJ=∫01xtan−1(x)dx, find the value of IJ\dfrac I J JI.
Problem Loading...
Note Loading...
Set Loading...