Forgot password? New user? Sign up
Existing user? Log in
If limx→af(x)=limx→a⌊f(x)⌋ \displaystyle \lim_{x\to a} f(x) = \lim_{x\to a} \lfloor f(x) \rfloor x→alimf(x)=x→alim⌊f(x)⌋ and it exist, then what can we conclude for the value of limx→af(x)\displaystyle \lim_{x\to a} f(x) x→alimf(x)?
Problem Loading...
Note Loading...
Set Loading...