Forgot password? New user? Sign up
Existing user? Log in
∫0π/2tan3(x)cos5(x)cos(7x) dx=AB\large \int^{{\pi } /{2} }_{0}\tan ^{3}( x) \cos ^{5}(x) \cos (7x) \, dx=\dfrac{A}{B} ∫0π/2tan3(x)cos5(x)cos(7x)dx=BA
The equation above holds true for some coprime positive integers AAA and BBB. Find A+BA+BA+B.
Bonus: Find the close form of the definite integral, IY,Z=∫0π/2(tan(x))Y(cos(x))Z−2cos(Zx) dxI_{Y,Z} = \int ^{{\pi } / {2} }_{0}\left( \tan \left( x\right) \right) ^{Y}\left( \cos \left( x\right) \right) ^{Z-2}\cos \left( Zx\right) \, dxIY,Z=∫0π/2(tan(x))Y(cos(x))Z−2cos(Zx)dx
Problem Loading...
Note Loading...
Set Loading...