\[\displaystyle \left\lceil \sum _{ n=1 }^{ \infty }{ \left( \sum _{ p=2 }^{ x }{ \dfrac { 1000 }{ { n }^{ p } } } \right) } \right\rceil =1000x\]

Find the smallest positive integer value of \(x\) which satisfies the given equation.

×

Problem Loading...

Note Loading...

Set Loading...