Suppose that \(x,\) \(y,\) and \(z\) are **distinct** complex numbers, such that

\[ \begin{cases} x+y+z=1 \\ x^2+y=y^2+z=z^2+x.\\ \end{cases} \]

What is the value of \((x-y)(y-z)(z-x)?\)

×

Problem Loading...

Note Loading...

Set Loading...