Forgot password? New user? Sign up

Existing user? Log in

$\displaystyle \sum^{\infty}_{n=1}\left \{ \dfrac{1}{\pi} \sum^{\infty}_{k=1} \cot^{-1} \left ( 1+2 \sqrt{ \sum^{k}_{r=1} r^3 } \right ) \right \}^{n} = \dfrac{1}{A}$

Find the value of $A$.

Problem Loading...

Note Loading...

Set Loading...