A number theory problem by abhishek anand

Let \(x_1\), \(x_2\), \(\dots\), \(x_{2014}\) be real numbers different from 1, such that \(x_1 + x_2 + \dots + x_{2014} = 1\) and \[\frac{x_1}{1 - x_1} + \frac{x_2}{1 - x_2} + \dots + \frac{x_{2014}}{1 - x_{2014}} = 1.\] Find the value of \[\frac{x_1^2}{1 - x_1} + \frac{x_2^2}{1 - x_2} + \dots + \frac{x_{2014}^2}{1 - x_{2014}}.\]

×

Problem Loading...

Note Loading...

Set Loading...