Forgot password? New user? Sign up
Existing user? Log in
1m+1n−1mn2=34\large \dfrac1m + \dfrac1n - \dfrac1{mn^2} = \dfrac34 m1+n1−mn21=43
Let all the solutions of the pairs of integers (m,n)(m,n) (m,n) that satisfy the equation above be denoted by (m1,n1),(m2,n2),…,(mk,nk) (m_1, n_1), (m_2, n_2), \ldots, (m_k, n_k ) (m1,n1),(m2,n2),…,(mk,nk). Find ∑i=1k(mi+ni)\displaystyle \sum_{i=1}^k (m_i + n_i) i=1∑k(mi+ni).
Problem Loading...
Note Loading...
Set Loading...