A number Theory question on reaching 100,000 points

Find the least positive integer \(n\) for which there exists a set \(\{\ s_{1}, s_{2}, . . . , s_{n}\}\) consisting of \(n\) distinct positive integers such that

\[\large{\left( 1-\frac { 1 }{ { s }_{ 1 } } \right) \left( 1-\frac { 1 }{ { s }_{ 2 } } \right) \cdots \cdots \left( 1-\frac { 1 }{ { s }_{ n } } \right) =\frac { 42 }{ 2010 } }\]

Bonus:- Prove it's unique

×

Problem Loading...

Note Loading...

Set Loading...