Forgot password? New user? Sign up
Existing user? Log in
Let ∑n=0∞an \sum\limits_{n=0}^\infty a_n n=0∑∞an and ∑n=0∞bn \sum\limits_{n=0}^\infty b_n n=0∑∞bn be two convergent numerical series with positive terms.
True or false?:
The series ∑n=0∞(ancos(bnx)+bnsin(anx)) \sum\limits_{n=0}^\infty \left(a_n\cos(b_nx)+b_n\sin(a_nx) \right) n=0∑∞(ancos(bnx)+bnsin(anx)) is convergent in R\mathbb{R} R.
Problem Loading...
Note Loading...
Set Loading...