Given the matrix \(A= \begin{vmatrix}{3} && {1} \\ {3} && {2}\end{vmatrix} \bmod{26}\), use a Hill cipher to decipher the message \( VVIXHUIEYCRI \) using modulo 26, where \( A \rightarrow 0, B \rightarrow 1, \ldots , Z \rightarrow 25, \) and enter the result as a string of integers.

What does the deciphered message state?

×

Problem Loading...

Note Loading...

Set Loading...