Forgot password? New user? Sign up

Existing user? Log in

Let $A$ denote the sum of an infinite geometric progression, $\dfrac1{2^3} + \dfrac1{2^6} + \dfrac1{2^9} + \cdots$.

Let $B = \log_{128}2$, compute $\Large B^{\log_A 4 }$.

Problem Loading...

Note Loading...

Set Loading...