A problem for a friend II

Algebra Level 3

The roots of x2016x2015+x2013x2010+x20061=0x^{2016}-x^{2015}+x^{2013}-x^{2010}+x^{2006}-\ldots-1 = 0 are r1,r2,,r2016r_{1}, r_{2}, \ldots, r_{2016}.

Find

1i<j2016rirj\sum_{1 \leq i < j \leq 2016} r_{i}r_{j}

×

Problem Loading...

Note Loading...

Set Loading...