Forgot password? New user? Sign up
Existing user? Log in
f(x) f(x)f(x) is an even function with codomain R.\mathbb{R}.R. Its graph is symmetric about the line x=1 x=1 x=1, and f(x1+x2)=f(x1)⋅f(x2)f(x_{1}+x_{2})=f(x_{1})\cdot f(x_{2}) f(x1+x2)=f(x1)⋅f(x2) for any x1,x2∈[0,12] x_{1},x_{2}\in [0,\frac{1}{2}] x1,x2∈[0,21], and f(1)>0. f(1)> 0. f(1)>0.
Let an=f(2n+12n) a_{n}=f(2n+\frac{1}{2n}) an=f(2n+2n1). Find the value of limn→∞(ln an) \displaystyle\lim_{n\rightarrow \infty }(\ln\: a_{n}) n→∞lim(lnan).
Problem Loading...
Note Loading...
Set Loading...