\[\large n \qquad\qquad \large n^2 + 4\qquad\qquad \large 2n^2 + 5n + 8 \\ \large 12n + 13\qquad\qquad \large 24n - 11\qquad\qquad \large n^2 + 398n +12\]

Let \(n\) be a positive integer such that the 6 numbers above are all prime numbers. Find the sum of all the possible values of \(n\).

×

Problem Loading...

Note Loading...

Set Loading...