Forgot password? New user? Sign up

Existing user? Log in

For positive integers $n$ let $S(n)$ be the number of positive integer pairs $(a,b)$ such that $a^{2} + a + n = b^{2}$.

Let $n_{k}$ be the least positive integer for which $S(n_{k}) = k$.

Find $\displaystyle\sum_{k=0}^{4} n_{k}$.

Problem Loading...

Note Loading...

Set Loading...