Forgot password? New user? Sign up
Existing user? Log in
K=(∏i=0p2015−1(p2015−1i))(modp)\displaystyle K= \left(\prod _{ i=0 }^{ { p }^{ 2015 }-1 }{ \binom{{ p }^{ 2015 }-1}{i} } \right) \pmod p K=⎝⎛i=0∏p2015−1(ip2015−1)⎠⎞(modp)
Find KKK, given that ppp is a prime and is 111 mod 444.
Problem Loading...
Note Loading...
Set Loading...