A Weird Sum of Fractions!

Algebra Level 4

\[\large{ S = \sum_{i=1}^n \dfrac{1}{(a_i)(a_i + a_{i+1})(a_i + a_{i+1} + a_{i+2}) \dotsm (a_i + a_{i+1} + \ldots + a_{i+n-2}) }}\]

If \(a_1, a_2, \ldots, a_n\) are real numbers with \(\sum_{i=1}^n a_i = 0\), and where \(a_{n+1} = a_1, a_{n+2} = a_2\) and so on.. assuming that the denominators are non-zero. Then find the value of \(S\) upto three correct places of decimal.

×

Problem Loading...

Note Loading...

Set Loading...