# A year hidden between the powers of 2!

**Number Theory**Level 2

\[\Large 2^{a}-{2}^{b}={2016}\]

If the positive integers \(a\) and \(b\) satisfy the above equation, then find the value of \(a+b\).

\[\Large 2^{a}-{2}^{b}={2016}\]

If the positive integers \(a\) and \(b\) satisfy the above equation, then find the value of \(a+b\).

×

Problem Loading...

Note Loading...

Set Loading...