\[\displaystyle{{ x }+{ y }={ \left( \cfrac { \sqrt { x } }{ \sqrt { y } } +\cfrac { \sqrt { y } }{ \sqrt { x } } \right) }^{ 2 }}\]

\(x\) and \(y\) are positive real numbers satisfying the above equation.

Find Maximum value of \[\displaystyle{\cfrac { 24\sqrt { x } +7\sqrt { y } +31\sqrt { xy } }{ \sqrt { xy } } }\]

**Credits**:

×

Problem Loading...

Note Loading...

Set Loading...