Forgot password? New user? Sign up
Existing user? Log in
Let a,b,ca,b,ca,b,c be three real positive numbers and a2+b2+c2=3a^2+b^2+c^2=3a2+b2+c2=3. Find the minimum of the expression P=a2b+2c+b2c+2a+c2a+2b.P = \dfrac{a^2}{b + 2c} +\dfrac{b^2}{c + 2a}+ \dfrac{c^2}{a + 2b}.P=b+2ca2+c+2ab2+a+2bc2.
Problem Loading...
Note Loading...
Set Loading...