# Am I right or wrong?

Algebra Level 5

One day I was trying to prove the Cauchy Schwarz inequality using the rearrangement inequality. However, at last I succeeded in proving it. Assume that $$a_1,a_2,\dots a_n$$ and $$b_1,b_2, \dots b_n$$ are sequences of real numbers. Here are my steps:

Step 1: Let $$A=\displaystyle\sum_{i=1}^n a_i^2 \neq 0 \ , \ B=\displaystyle\sum_{i=1}^n b_i^2 \neq 0$$

Step 2: $$\ 2 = 1+1$$

Step 3: $$\ 2=\dfrac{\displaystyle\sum_{i=1}^n a_i^2}{A} + \dfrac{\displaystyle\sum_{i=1}^n b_i^2}{B}$$

Step 4: $$\ 2 = \dfrac{a_1^2}{A} +\dfrac{a_2^2}{A} + \dots \dfrac{a_n^2}{A} +\dfrac{b_1^2}{B} +\dfrac{b_2^2}{B} + \dots \dfrac{b_n^2}{B}$$

Step 5: So by rearrangement inequality, we have :

$$2 \geq \dfrac{a_1b_1}{\sqrt{AB}}+\dfrac{a_2b_2}{\sqrt{AB}} + \dots + \dfrac{a_nb_n}{\sqrt{AB}}+\dfrac{b_1a_1}{\sqrt{AB}}+\dfrac{b_2a_2}{\sqrt{AB}}+ \dots +\dfrac{b_na_n}{\sqrt{AB}}$$

Step 6: $$\ 2\sqrt{AB} \geq 2(a_1b_1+a_2b_2 + \dots + a_nb_n)$$

Step 7: $$\ \sqrt{AB} \geq (a_1b_1+a_2b_2 + \dots + a_nb_n)$$

Step 8: Squaring both sides, we have:

$$AB \geq (a_1b_1+a_2b_2 \dots a_nb_n)^2$$

Step 9: By replacing A,B we restore the form and we get the famous Cauchy Schwarz Inequality:

$$\left(\displaystyle\sum_{i=1}^n a_i^2\right)\left(\displaystyle\sum_{i=1}^n b_i^2\right) \geq \left(\displaystyle\sum_{i=1}^n a_ib_i \right)^2$$

If you think I made a mistake in the proof, click the step number where I made a mistake. If you think that my proof is valid, click $$0$$.

×