\[ \begin{eqnarray} \displaystyle & A&=\int _{ -\infty }^{ \infty }{ ({ 2 }015x^{ 2015 }+2014) } dx+\int _{ \infty }^{ -\infty }{ ({ 2 }015x^{ 2015 }+2014)dx } \\ \displaystyle &B&=\int _{ 0 }^{ \infty }{ ({ 2 }015x^{ 2015 }+2015) } dx+\int _{ \infty }^{ 0 }{ ({ 2 }015x^{ 2015 }+2015)dx } \\\displaystyle & C&= \int _{ 0 }^{ -\infty }{ ({ 2 }015x^{ 2015 }+2016) } dx+\int _{ -\infty }^{ 0 }{ ({ 2 }015x^{ 2015 }+2016)dx } \end{eqnarray}\]

Let \(A,B,C\) denote the values of the first, second, third expression as stated above respectively.

Evaluate \(A + B + C\).

×

Problem Loading...

Note Loading...

Set Loading...