# Inequality Chain

**Algebra**Level 2

Let \(a, b, c, d,\) and \(e\) be real numbers such that

\(a+b<c+d\)

\(b+c<d+e\)

\(c+d<e+a\)

\(d+e<a+b\).

Which among \(a,b,c,d,e\) is the largest and smallest?

Put your answer in the form (largest, smallest). For example, if you think the largest is \(c\) and the smallest is \(e\), then your answer should be \((c, e)\).