An algebra problem by Anand Raj

Algebra Level 2

Written on a blackboard is the polynomial \[{ x }^{ 2 }+x+2014\] Calvin and Hobbes take turns alternatively (starting with Calvin) in the following game. During his turn, Calvin should either increase or decrease the coefficient of x by 1. And during his turn, Hobbes should either increase or decrease the constant coefficient by 1. If Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots, then Who Has A Winning Strategy?

×

Problem Loading...

Note Loading...

Set Loading...