Compute the value of the following infinite sum:

\[ \displaystyle \sum _{ r=1 }^{ \infty }{ \frac { { r }^{ 8 } }{ r! } } \]

**NOTE**

\( e =\displaystyle \lim_{x\rightarrow \infty} \left(1+\dfrac{1}{x}\right)^{x} \) is the Euler's number.

**BONUS:**
Find \( \displaystyle \sum _{ r=1 }^{ \infty }{ \frac { { r }^{ n } }{ r! } } =?\)

×

Problem Loading...

Note Loading...

Set Loading...