Let **a**,**b**,**c** and **d** be distinct real numbers such that

\(a\) + \(b\) +\(c\) + \(d\) = 3 and

\(a^2\) + \(b^2\) + \(c^2\) + \(d^2\) =45

Then Find the value of \[\frac{a^5}{(a-b)(a-c)(a-d)}+\frac{b^5}{(b-a)(b-c)(b-d)}+\frac{c^5}{(c-a)(c-b)(c-d)}+\frac{d^5}{(d-a)(d-b)(d-c)}\]

×

Problem Loading...

Note Loading...

Set Loading...