Forgot password? New user? Sign up
Existing user? Log in
6log5xlog3(x5)−5log66xlog3(x3)=6log55x−5log6x \large { 6 }^{ \log _{ 5 }{ x } }\log _{ 3 }( { x }^{ 5 } ) -{ 5 }^{ \log _{ 6 }{ 6x } }\log _{ 3 }{ \left( \dfrac { x }{ 3 }\right) } ={ 6 }^{ \log _{ 5 }{ 5x } }-{ 5 }^{ \log _{ 6 }{ x } }6log5xlog3(x5)−5log66xlog3(3x)=6log55x−5log6x
If the sum of the solutions to the equation above is equal to abc+d,\large { a }^{ \frac { b }{ c } }+d, acb+d,
where a,b,ca, b, ca,b,c and dd d are all positive integers with bbb and ccc are coprime, what is the smallest possible value of abc+dabc+dabc+d?
Problem Loading...
Note Loading...
Set Loading...