Forgot password? New user? Sign up
Existing user? Log in
Let x1,x2x_1,x_2x1,x2 be the roots of the quadratic equation x2+ax+b=0,x^2+ax+b=0,x2+ax+b=0, where aaa and bbb are complex numbers, and y1,y2y_1,y_2y1,y2 are the roots of the equation y2+∣a∣y+∣b∣=0y^2+| a |y+| b|=0 y2+∣a∣y+∣b∣=0.
If ∣x1∣=∣x2∣=1,| x_1 |=| x_2 |=1,∣x1∣=∣x2∣=1, what is ∣y1∣+∣y2∣=? | y_1|+| y_2 |= ? ∣y1∣+∣y2∣=?
Note: ∣⋅∣| \cdot |∣⋅∣ denotes the absolute value function.
Problem Loading...
Note Loading...
Set Loading...