Do You Love Summations?

Algebra Level 4

n=1101(2n+112+22+32++n2)\large \displaystyle \sum_{n=1}^{101} \left( \dfrac{2n+1}{1^2 + 2^2 + 3^2 + \cdots + n^2} \right )

If the value of above expression can be written in the form AB\dfrac{A}{B}, where AA and BB are positive coprime integers, find A+BA+B.

×

Problem Loading...

Note Loading...

Set Loading...