Forgot password? New user? Sign up
Existing user? Log in
f(x,y)=f((2x+2y),(2y−2x)) \large f(x,y) = f((2x+2y), (2y-2x)) f(x,y)=f((2x+2y),(2y−2x))
For all real values of xxx and yyy, consider a periodic function f(x,y)f(x,y) f(x,y) that satisfies the equation above.
Suppose we define a function ggg by g(x)=f(2x,0)g(x) = f(2^x,0) g(x)=f(2x,0), what is the period of g(x)g(x) g(x)?
Problem Loading...
Note Loading...
Set Loading...