$\text{J}_{n}=\begin{cases} 0 \quad & \text{if}~n=0; \\ 1 \quad & \text{if} ~ n=1; \\ \text{J}_{n-1}+2\text{J}_{n-2} \quad & \text{if}~n>1.\end{cases}$

*Jacobsthal Numbers* are defined by the recurrence relation as described above. Evaluate:
$\displaystyle \sum_{n=0}^{\infty} \dfrac{\text{J}_{n}}{10^{n+1}} \; .$

If the value of the above expression is in the form $A^{-1}$, find $A$.

×

Problem Loading...

Note Loading...

Set Loading...