Forgot password? New user? Sign up
Existing user? Log in
Let a,b,ca,b,ca,b,c be non-negative reals. Find the maximum value of kkk such that (a+b+c)(1a+1b+1c)+k(ab+bc+ca)a2+b2+c2≥9+k.(a+b+c)\left(\frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } \right)+\frac { k(ab+bc+ca) }{ { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } } \ge 9+k.(a+b+c)(a1+b1+c1)+a2+b2+c2k(ab+bc+ca)≥9+k. Write your answer to 3 decimal places.
Problem Loading...
Note Loading...
Set Loading...