Forgot password? New user? Sign up
Existing user? Log in
Let x,y,z,tx, y, z, tx,y,z,t be positive real numbers such that 11+x+11+y+11+z+11+t≥3\dfrac { 1 }{ 1+x } +\dfrac { 1 }{ 1+y } +\dfrac { 1 }{ 1+z } +\dfrac { 1 }{ 1+t } \ge 31+x1+1+y1+1+z1+1+t1≥3.
If the maximum value of xyztxyztxyzt can be expressed as pq\frac pq qp, where ppp and qqq are coprime positive integers, then find p+qp + qp+q.
Problem Loading...
Note Loading...
Set Loading...