\[S=\sum_{n=-\infty}^{\infty} \dfrac{(-1)^n}{1+n^2}=\dfrac{a\pi e^{b\pi}}{e^{c\pi}-1},\]

where \(a,b,c \) are natural numbers. Find \(a+b+c\).

**Note:** Please avoid using wolfram alpha.

**Hint:** Think about the Fourier transform of \(f(x)=e^{-|ax|}\).

×

Problem Loading...

Note Loading...

Set Loading...