Forgot password? New user? Sign up
Existing user? Log in
S=∑n=−∞∞(−1)n1+n2=aπebπecπ−1,S=\sum_{n=-\infty}^{\infty} \dfrac{(-1)^n}{1+n^2}=\dfrac{a\pi e^{b\pi}}{e^{c\pi}-1},S=n=−∞∑∞1+n2(−1)n=ecπ−1aπebπ,
where a,b,ca,b,c a,b,c are natural numbers. Find a+b+ca+b+ca+b+c.
Note: Please avoid using wolfram alpha.
Hint: Think about the Fourier transform of f(x)=e−∣ax∣f(x)=e^{-|ax|}f(x)=e−∣ax∣.
Problem Loading...
Note Loading...
Set Loading...