Forgot password? New user? Sign up
Existing user? Log in
If the value of
∑r=1∞r3+(r2+1)2(r4+r2+1)(r2+r)\displaystyle\sum_{r=1}^{\infty} \frac{r^{3}+\left( r^{2}+1 \right)^{2}}{(r^{4}+r^{2}+1)(r^{2}+r)}r=1∑∞(r4+r2+1)(r2+r)r3+(r2+1)2
can be expressed as ab\displaystyle\frac{a}{b}ba where aaa and bbb are coprime positive integers, find the value of a+ba+ba+b.
Problem Loading...
Note Loading...
Set Loading...