An Infinite Summation Involving Sinc Function

Calculus Level 5

\[\sum_{n=1}^\infty \dfrac{1}{n}\int_{2\pi n} ^\infty \dfrac{\sin{z}}{z}dz = \pi(A-\log{\sqrt{B\pi}})\]

If the equation above holds true for positive integers \(A\) and \(B\), then find \(A+B\).

×

Problem Loading...

Note Loading...

Set Loading...